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improvements observed in the selection population. To 
illustrate the value of these insights, we propose a practi-
cal genomic selection scheme that substantially shortens 
the number of generations required to fully capture the 
benefits of selfing. Specifically, we provide simulation 
evidence that indicates the proposed scheme matches or 
exceeds the selection gains observed in advanced popula-
tions (i.e. F8 and doubled haploid) across a broad range 
of heritability and QTL models. Without sacrificing selec-
tion gains, we also predict that fully inbred candidates for 
potential commercialization can be identified as early as 
the F4 generation.

Introduction

In their seminal paper on genomic estimated breeding val-
ues (GEBVs), Meuwissen et al. (2001) claimed that the 
ability to predict genetic values directly from molecular 
marker data will have significant consequences for selec-
tion and breeding. Specifically, GEBV predictions have 
the potential to drastically reduce phenotyping costs and 
increase genetic gain in plants and animals by shortening 
generation intervals (Meuwissen et al. 2001). Subsequent 
empirical and simulation experiments support the notion 
that genomic, i.e. GEBV-based, selection will in fact revo-
lutionize selection and breeding (Bernardo and Yu 2007; 
Goddard and Hayes 2007; Heffner et al. 2009; Legarra 
2008; Lee et al. 2008; Lorenzana and Bernardo 2009; Luan 
et al. 2009; Schaeffer 2006).

The performance of genomic selection depends on 
two critical factors: (i) the occurrence of superior geno-
types (i.e. transgressive segregants) in the selection popu-
lation and (ii) the ability of GEBVs (based on a training 
population) to identify such individuals. When evaluating 

Abstract Self-fertilization (selfing) is commonly used 
for population development in plant breeding, and it is 
well established that selfing increases genetic variance 
between lines, thus increasing response to phenotypic 
selection. Furthermore, numerous studies have explored 
how selfing can be deployed to maximal benefit in the 
context of traditional plant breeding programs (Cornish in 
Heredity 65:201–211,1990a, Heredity 65:213–220,1990b; 
Liu et al. in Theor Appl Genet 109:370–376, 2004; Pooni 
and Jinks in Heredity 54:255–260, 1985). However, the 
impact of selfing on response to genomic selection has 
not been explored. In the current study we examined how 
selfing impacts the two key aspects of genomic selec-
tion—GEBV prediction (training) and selection response. 
We reach the following conclusions: (1) On average, self-
ing increases genomic selection gains by more than 70 
%. (2) The gains in genomic selection response attribut-
able to selfing hold over a wide range population sizes 
(100–500), heritabilities (0.2–0.8), and selection intensi-
ties (0.01–0.1). However, the benefits of selfing are dra-
matically reduced as the number of QTLs drops below 20. 
(3) The major cause of the improved response to genomic 
selection with selfing is through an increase in the occur-
rence of superior genotypes and not through improved 
GEBV predictions. While performance of the training 
population improves with selfing (especially with low 
heritability and small population sizes), the magnitude 
of these improvements is relatively small compared with 
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and comparing experimental designs for genomic selec-
tion, gains in either factor can provide justification for the 
resource expenditure associated with population develop-
ment. In this regard, plant researchers have at their disposal 
the option to advance populations through self-fertilization 
(or selfing). Selfing is a common mode of reproduction in 
plant species that affects multiple parameters relevant to 
genomic selection.

First, selfing increases homozygosity and amplifies 
additive genetic variance (Allard 1999; Falconer and 
Mackay 1996; Simmonds 1979). The resulting gains in 
additive genetic variance improve narrow-sense herit-
ability for GEBV training and increase the occurrence 
of superior genotypes for selection. Second, selfing 
modulates the amount of effective recombination in a 
population (Falconer and Mackay 1996). Recombina-
tion reduces linkage disequilibrium (LD) among the 
markers, and reducing marker LD mitigates the negative 
impact of multicollinearity on marker-based regression 
models (Farrar and Glauber 1967). In addition, recombi-
nation can alter linkage phase among the QTL and thus 
have an impact on the breeding values of selection candi-
dates (Iyamabo and Hayes 1995; Riggs and Snape 1977). 
Finally, populations undergoing progressive rounds 
of selfing are susceptible to genetic drift (Falconer and 
Mackay 1996; Wells and Weiser 1989), which can reduce 
genetic variance.

The purpose of this paper was to evaluate the use of pro-
gressive rounds of selfing in the design of genomic selec-
tion experiments. Researchers have previously addressed 
the question of which population characteristics affect the 
accuracy of popular GEBV training methods (Daetwyler 
et al. 2008, 2010; Zhong et al. 2009), and the impact of 
selfing on selection gains in traditional breeding has also 
been studied (Cornish 1990a, b; Liu et al. 2004; Pooni and 
Jinks 1985). However, the benefits of selfing for improving 
GEBV training and genomic selection response have not 
been considered in the literature. Such information can be 
important in deciding the number of selfing generations to 
employ during population development for GEBV training 
and/or selection.

In an effort to remedy this situation, we conducted 
a simulation study to quantify and contrast the perfor-
mance of genomic selection in populations derived 
from a cross between two inbred lines. Such biparental 
populations are commonly developed as part of ongoing 
breeding programs and have been the focus of a num-
ber of recent research studies concerning genomic selec-
tion in plants (Bernardo 2010; Bernardo and Yu 2007; 
Guo et al. 2012; Heffner et al. 2010, 2011; Lorenzana 
and Bernardo 2009; Piepho 2009; Piyasatian et al. 2007; 
Wong and Bernardo 2008). Herein we investigate the 

impact of selfing on the response of biparental popula-
tions to genomic selection. Specifically, we address the 
following questions: 

1. How does selfing impact the performance of genomic 
selection in terms of both training and selection 
response?

2. How many selfing generations are necessary to capture 
most of the performance benefits?

3. Does selfing the training population improve GEBV 
predictions when predicting outside of the training 
population?

4. Can the breeder capture gains comparable to those 
achieved in advanced populations (e.g. F8 or doubled 
haploids) without investing the time and resources 
required to develop such advanced populations?

These results may be useful to researchers when analyz-
ing the costs and benefits of selfing to maximize returns 
from genomic selection in breeding programs.

Methods

Simulation

We focused on populations derived from a biparental 
inbred cross through single seed descent (Allard 1999). 
We also included doubled haploid (DH) populations as a 
benchmark. These populations have high levels of linkage 
disequilibrium (LD) and, since they derive from only two 
inbred lines, contain only a small portion of the genetic 
variation present in the species (Snape 1976; Bordes et al. 
2007; Bernardo 1996). Let P1 and P2 be the inbred parents 
used for population development.

Simulating the genome

We simulated the maize genome using the integrated map 
found in McMullen et al. (2009). All ten chromosomes 
had 1 cM marker spacing (1,350 markers in total). Crosso-
vers were simulated according to a Poisson process using 
cM lengths derived from Haldane’s mapping function. 
In each simulation iteration, we placed NQTL QTLs ran-
domly throughout the genome and sampled additive effects 
(a1,…, aN_QTL) from a gamma distribution with shape 
parameter 1.45, defined to be consistent with empirical evi-
dence in maize (Buckler et al. 2009). A phase parameter p 
controlled the probability that a given effect aj was nega-
tive. In other words, at a given QTL, p controlled the prob-
ability that the P2 allele had a negative effect relative to the 
P1 allele.
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Simulating phenotype

Let gij ∈ {0,1,2} encode the genotype of individual i at 
QTL j, and let bvi =

∑NQTL

j=1 gijaj denote individual i’s 
breeding value. Unless otherwise stated, we simulated 
phenotype y according to the standard additive model: 
yi = bvi + ri, where ri ∼ N(0,σr

2). This model assumed con-
stant environmental variance across breeding generations.

We also considered two classes of non-additive phe-
notypes. The first class transformed the additive breeding 
value to determine the genetic component of phenotype. 
Given a transformation f : R �→ R, we simulated phe-
notype using the following model: yi = f(bvi) + ri. For 
instance, the sigmoid transformation in Fig. 1a modeled 
duplicate and complementary gene dosage (Kearsey and 
Sturley 1984). The parabolic transformation in Fig. 1b 
modeled biological systems where marginal increases in 
additive breeding value transition from being beneficial to 
detrimental. For example, maximizing the breeding value 
for plant height will increase the phenotype until the plant 
becomes too tall for the root system to support. The sec-
ond class of non-additive model explicitly simulated pair-
wise epistatic interactions between alleles. We randomly 
assigned the number of interacting pairs uniformly between 
1 and 

(NQ

2,

)

  and we sampled the epistatic effects from the 
same gamma distribution as the additive effects. The sign 
of each epistatic effect was set according to the phase 
parameter p.

Regardless of the model used to determine breeding value, 
we also introduced a normally distributed environmental 
noise term drawn from N(0,σr

2). Let σ 2
F2

 be the variance of 
breeding values in an F2. Let h2 = σ 2

F2
/σ y

2    denote heritabil-
ity, and note that heritability always refers to F2 heritability.

Parameter distributions

Each simulation iteration was parameterized by five key 
variables: population size (N), heritability (h2), allele effect 
phase (p), number of QTL (NQTL), and selection inten-
sity (I). Selection intensity was defined as Nsel/N, where 
Nsel denotes the number of selected individuals. In order 
to study a broad range of scenarios, we sampled these 
variables from the default distributions shown in Table 1. 
The values for N, p, and I correspond to those commonly 
encountered in plant breeding. The range of h2 (0.2–0.8) 
was chosen to represent values empirically observed in 
plant breeding experiments for quantitative traits (e.g. 
yield) (Hallauer and Miranda 1988; Albrecht et al. 2011; 
Bernardo 1996). The range of NQTL (5–100) is consistent 
with empirical estimates of the number of QTLs segregat-
ing in experimental plant populations (Buckler et al. 2009; 
Laurie et al. 2004; Brachi et al. 2010; Otto and Jones 2000).

The non-additive models required additional parameteri-
zation. We varied the slope of the sigmoid transformation, 
(1.0 + e−c1x)−1, by drawing c1 uniformly from 0.1 to 1.0. 
For the parabolic transformation, we randomly sampled c1

2,c2
2 

from the interval 0.0–1.0 and mapped the additive breeding  
values (via scaling) into the interval bounded by c2

1 and  
c2

2. This approach allowed us to use subsets of the parabolic 
transformation to model a broad range of non-additivity.

GEBV training methods

For the majority of our experiments, we used GBLUP to 
compute GEBVs (Meuwissen et al. 2001). To demonstrate 
that our results are robust to the choice of estimation meth-
odology, we also examined the impact of using Bayes B 
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Fig. 1  Examples of non-additive relationships between addi-
tive breeding value and the transformed breeding value used to 
determine phenotype. Simulated breeding values were scaled 

into the [0,1] interval and mapped using the transformation: (a) 
f (x) = (1.0 + e−c1x)−1 or (b) f (x) = 1 − 4(x − 0.5)2
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and Bayes C to compute GEBVs (Meuwissen et al. 2001; 
Verbyla et al. 2009, 2010).

The Bayes B method incorporates variable selection 
into the estimation of GEBVs through the specification of a 
parameter π, which represents the prior probability of a vari-
able having a nonzero effect. Like GBLUP, Bayes B assumes 
that the (non-zero) effects are normally distributed, though 
with effect-specific variance components. The GEBVs were 
obtained by the technique of Bayesian Model Averaging 
(Hoeting et al. 1999) across samples obtained by the applica-
tion of the Metropolis–Hastings Algorithm (Hastings 1970).

The method of Bayes C is similar to that of Bayes B, the 
difference being that the parameter π is estimated from the 
data or assumed to be distributed according to some prior 
distribution. The estimation of π allows Bayes C the flexi-
bility to adjust the proportion of nonzero effects for a given 
dataset. In our implementation of Bayes C, we estimate π 
as a function of the observed genotypes and map data.

Performance metric for response to genomic selection

Let σF2
 be the standard deviation of breeding values in the 

F2. To simulate genomic selection, we sorted the selec-
tion population by GEBV, selected the top Nsel individuals, 
and determined the maximum true breeding value in the 
selected set. Gain was reported as

In other words, we measured advancement of the maxi-
mum selected individual beyond the best parent. This trans-
gressive gain metric reflects our interest in identifying the 
best possible individual for inbred development. In this 
context, we use the term superior genotypes to refer to the 
most desirable candidates for selection, i.e. the individuals 
with the largest breeding values. Note that gain was always 
defined in units of standard deviation of F2 breeding values.

Selection populations

For the first set of experiments (Sects. 3.1–3.2), we per-
formed genomic selection in the same population used 

(maxi∈Nsel
{bvi} − max{bvP1

,bvP2
})/σF2

.

for GEBV training, i.e. the training and selection popu-
lations coincided. For the second set of experiments 
(Sects. 3.3–3.4), we separated the training and selection 
populations. More precisely, the training and selection 
populations were both derived from the same biparental 
family, but we simulated the populations independently. 
Finally, for the third set of experiments (Sects. 3.6–3.7), 
we performed genomic selection in the progeny of high-
performing training set individuals. We designed this last 
set of experiments to evaluate a new method for short-
ening the number of selection and inbreeding cycles 
required to produce fully inbred candidates for potential 
commercialization.

Results

Impact of selfing on gains when training and selecting 
from the same population

Figure 2a clearly demonstrates that progressive selfing 
had a significant and positive impact on genomic selec-
tion gains. In particular, selfing to the F8 produced a 72 % 
increase over F2 gains. Figure 2a also shows that marginal 
gains diminished as selfing progressed. For example, the 
F4 captured nearly 90 % of the F8 gains, and the F5 real-
ized 95 % of the F8 gains. Simulation has led to similar 
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Fig. 2  The effect of selfing on (a) genomic selection gains and (b) 
population max true breeding value. On the y-axes, max denotes 
the best true breeding value individual in the Nsel subset, true max 
denotes the best true breeding value in the population (regardless of 
whether it was obtained in Nsel), and pmax denotes the best parental 
true breeding value. This figure shows average performance across 
the parameter distributions listed in Table 1. Based on 10,000 simula-
tions (S.E. ≤ 0.01)

Table 1  Default distributions for simulation parameters. Parameters 
were randomly sampled within the specified range for each iteration 
of the simulation

Parameters Symbols Range

Number of QTL NQTL 5–100

Heritability h2 0.2–0.8

Phase p 0.4–0.6

Selection intensity I 0.01–0.1

Population size N 100–500
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conclusions in the context of phenotypic selection (Cornish 
1990). Also note that the F8 and DH performed similarly, 
consistent with previous observations (Bordes et al. 2007; 
Murigneux et al. 1993; Park et al. 1976; Choo et al. 1982; 
Courtois 1993).

As noted earlier, response to genomic selection 
depends both on the quality of GEBV training and 
the magnitude of the max breeding value in the selec-
tion population. These two factors are confounded in 
Fig. 2a, which depicts the max breeding value captured 
by genomic selection. As a result, the specific cause 
of improved response to genomic selection upon self-
ing cannot be determined. In an effort to resolve this 
issue, we generated a second plot showing the change 
in the true max population breeding value (regard-
less of whether it was captured by genomic selection) 
across selfing generations (Fig. 2b). The similarity of the 
curves in Fig. 2a, b suggests that the majority of gains 
due to selfing arise from an increase in the population 
max breeding value, rather than improvement in GEBV 
training. This assertion is also supported by experiments 
(described in a later section) which use independent 
training and selection populations. However, we first 
wish to quantify the marginal effects of the critical simu-
lation parameters when training and selecting from the 
same population.

Marginal impact of simulation parameters when training 
and selecting from the same population

The curve in Fig. 2a reports the expected genomic selec-
tion gain in each selfing generation from the F2 to the F8. 
Notice that the maximum expected gain occurs in the F8 
and the minimum expected gain occurs in the F2. For the 
experiments in this section, we defined ∆gain as the differ-
ence between the max gain and min gain observed in the 
sequence of selfing generations (F2–F8). The ∆gain metric 
quantifies the impact that repeated selfing had on selec-
tion gains. Positive values for ∆gain indicate that selfing 
affected genomic selection gains.

Figure 3 shows how ∆gain responded to changes in the 
primary simulation parameters. Population size (N) had 
very little impact on ∆gain once N ≥ 200, though ∆gain 
increased as N fell to 100 (Fig. 3a). Similarly, changes in 
heritability had only a minor influence on ∆gain once 
h2 ≥ 0.5, but ∆gain increased modestly when heritabil-
ity decreased below this value (Fig. 3b). The magnitude 
of ∆gain was sensitive to selection intensity (I) when 
0.01 ≤ I ≤ 0.05, but the influence of selection inten-
sity diminished as I exceeded 0.05 (Fig. 3c). The number 
of QTL (NQTL) clearly had the greatest impact on ∆gain 
(Fig. 3d). In particular, ∆gain increased very rapidly as NQTL 
increased from 5 to 25 but had less response thereafter. In 
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Fig. 3  The impact of the key 
simulation parameters on ∆gain  
when training and selecting 
in the same population. ∆gain 
measures the impact that selfing 
had on genomic selection gains 
(i.e. ∆gain = max gain − min 
gain). Positive values for ∆gain 
indicate that selfing affected 
genomic selection gains. These 
curves illustrate how ∆gain 
responded to changes in (a) 
population size; (b) heritabil-
ity; (c) selection intensity; (d) 
number of QTL. All parameters 
not specified by the x-axis were 
drawn from default distribu-
tions in Table 1. Based on 5,000 
simulations (S.E. ≤ 0.01)
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summary, the curves stayed strictly above 0.0 across all val-
ues for the critical variables, indicating that selfing consist-
ently had an impact on genomic selection gains.

The ∆gain metric carried insufficient information to 
determine how many rounds of selfing were necessary to 
capture the majority of potential gains. To clarify this issue, 
we defined G to be the earliest generation such that gains 
exceeded 90 % of the maximum gain achievable through 
selfing. By tracking G, we could determine the minimum 
number of generations necessary to realize most of the ben-
efits from selfing. Figure 4 illustrates how the main simula-
tion parameters affected G.

In most cases, selfing to the F5 was sufficient to capture 
90 % of the potential gains (Fig. 4). This conclusion was 
largely independent of population size (Fig. 4a), heritabil-
ity (Fig. 4b), and selection intensity (Fig. 4c). However, the 
number of QTL had a significant impact on G (Fig. 4d). As 
the number of QTLs dropped below 10, selfing to the F3 
sufficed to capture most of the potential gains.

Impact of selfing on gains when training and selecting 
in independent populations

As previously stated, when training and selecting in the 
same population, we cannot determine whether selfing 
improved genomic selection response through better GEBV 

training or through the increased occurrence of superior 
genotypes. While Fig. 2 indicates that selfing improved 
selection gains by increasing the max population breeding 
value, it remains to determine whether selfing also signifi-
cantly improved the ability of the GEBVs to identify supe-
rior genotypes.

To study the impact of selfing on training, we trained 
GEBVs on selfed populations (F2 − F8) and performed 
selection in different DH and F8 populations. The selec-
tion populations were independently derived from the 
same biparental cross. Figure 5 shows the impact of selfing 
the GEBV training population when selecting in (A) the 
DH and (B) the F8. Regardless of whether selecting from 
a DH or F8, selfing produced only minor improvement 
in genomic selection gains. This evidence supports the 
hypothesis that selfing the training population only mod-
estly improves the ability of the GEBVs to identify supe-
rior genotypes. This observation is consistent with our pre-
vious experiments where training and selection occurred in 
the same population. In that case, an increase in the popula-
tion max appeared to be the dominant factor in determining 
selection gains (Fig. 2).

It should be noted that these results correspond to aver-
age performance across a range of values for the key simu-
lation parameters (Table 1). In the next section, we test the 
sensitivity of our conclusions to marginal changes in each 
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by the x-axis were drawn from 
default distributions in Table 1. 
Based on 5,000 simulations



2913Theor Appl Genet (2013) 126:2907–2920 

1 3

key parameter value. Further, since the DH and F8 selection 
populations gave nearly identical results in this section, 
experiments in the next section use only the DH population 
for selection.

Marginal impact of simulation parameters when training 
and selecting in independent populations

The results in the previous section indicate that, on aver-
age, selfing the training population does not significantly 
impact genomic selection response in an independent 
selection population. In this section, we describe experi-
ments conducted to determine the sensitivity of this conclu-
sion to marginal changes in the key simulation parameters 
(Table 1). For these experiments, we defined ∆gain as the 
difference between the max gain and min gain observed 
(selecting in the DH) in the sequence of training genera-
tions (F2–F8). We then determined how the primary simula-
tion parameters affected ∆gain. The ∆gain metric quantifies 
the impact that repeated selfing of the training set had on 
selection gains. Positive values for ∆gain indicate selfing 
impacted gains.

A general observation is that ∆gain was substantially 
lower when training and selecting in independent popu-
lations (Fig. 6) than when training and selecting in the 
same population (Fig. 3). This is despite the fact that the 
training and selection populations derived from the same 

biparental cross and had similar allele frequencies. In fact, 
∆gain approached 0.0 (indicating no benefit from selfing) 
in several cases: N = 500 (Fig. 6a), h2 = 0.8 (Fig. 6b), and 
Nsel/N = 0.1 (Fig. 6c). NQTL had the least impact on ∆gain 
(Fig. 6d). This observation is consistent with previous 
claims that NQTL has little impact on GBLUP performance 
(Daetwyler et al. 2010). The ∆gain metric became respon-
sive to the marginal parameters as N approached 100, h2 
approached 0.2, or Nsel/N approached 0.01 (Fig. 6a–c). 
Under these conditions, training significantly improves 
with selfing. However, even in these cases, selfing the train-
ing set had less effect on gains than selfing the selection 
population (Fig. 3). Overall, this evidence supports the 
hypothesis that the positive impact of selfing on genomic 
selection is largely due to increases in the occurrence of 
superior genotypes rather than improvement in GEBV 
training.

As noted previously, ∆gain carried insufficient for 
determining how many selfing generations were neces-
sary to accrue most of the performance benefits. Thus, 
we again employed the G statistic, which is defined as the 
earliest training generation exceeding 90 % of the maxi-
mum gain observed (Fig. 7). As seen in Fig. 4, selfing to 
the F5 was generally sufficient to capture the majority of 
potential gains, but the F3 became sufficient as the number 
of QTLs dropped below ten. This evidence suggests that 
GEBV gains from selfing experience diminishing marginal 
returns.

Summary of key issues regarding the impact of selfing 
on genomic selection

Thus far the simulation evidence supports the following 
conclusions: 

1. Selfing of the selection population significantly 
improves response to genomic selection by increasing 
the occurrence of superior genotypes.

2. Selfing of the training population can increase response 
to genomic selection by improving the ability of the 
GEBVs to identify superior genotypes. However, this 
benefit is marginal compared with the benefits of self-
ing the selection population.

3. Selfing to the F5 captures, on average, more than 90 % 
of the gains observed in the F8 population.

The first two conclusions suggest that selfing for 
genomic selection is best applied to increase the frequency 
of transgressive segregants, rather than to improve GEBV 
training. The third conclusion indicates that it might be pos-
sible to reduce the number of generations required to real-
ize the benefits of selfing for genomic selection response.
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ing value in the Nsel subset and pmax denotes the best parental true 
breeding value. This figure shows average performance across the 
distributions in Table 1. Based on 10,000 simulations (S.E. ≤ 0.01)
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Is it possible to reduce the number of generations 
while still realizing the benefits of selfing for response 
to genomic selection?

The above results suggest that it is not necessary to cre-
ate advanced selfed generations to obtain good training for 
genomic selection. The main benefit of selfing lies in the 
production of superior genotypes for selection. This led to 
the question of whether one might train in an early genera-
tion (e.g. F2, F2 testcross, or F3 families – depending on 
the crop) and use the resulting GEBVs to select from a 
larger population of segregating individuals for which only 
genotype information was available. Specifically, we would 
like to construct a selection population with properties as 
good or better than training and selection in an advanced 
selfed generation (e.g. F8), but we want to avoid investing 
the time and resources required to produce such advanced 
generations. As the price of genotyping continues to fall, 
we expect marker screening large populations in early gen-
erations to become cost effective.

During progressive rounds of selfing, additive genetic 
variance within the lines vanishes as additive genetic vari-
ance between the lines increases (Lynch and Walsh 1998; 
Cornish 1990). Therefore, the previously observed F8 
genomic selection gains were a consequence of selecting 
on additive genetic variance between the lines. In order to 

reduce the number of selfing generations required for devel-
opment of the selection population, we employed genomic 
selection to match or exceed the F8 gains by selecting on 
F2 within line variance (i.e. the F2 progeny). The result-
ing genomic selection scheme (outlined in Fig. 8) substan-
tially reduces the time and selfing generations required to 
develop inbreds for potential commercialization.

In the remainder of this section, we describe simulation 
experiments conducted to evaluate the scheme in Fig. 8. 
We first simulated 200 F2 individuals with phenotypes for 
GEBV training. It should be noted here that the pheno-
type of the F2 may refer to any of the following depend-
ing on the crop: (1) The phenotype of the actual F2 indi-
vidual. This would apply to the small number of situations 
in which single plant phenotyping is valid, such as for 
high heritability traits in glasshouse grown vegetable crops 
or perennial tree species; (2) F3 or F4 plots derived from 
each F2 individual; (3) Testcross plots derived from cross-
ing each F2 individual to one or more tester lines. Using a 
training population of size 200 is consistent with previous 
experiments exploring the application of genomic selection 
in biparental crosses (Bernardo and Yu 2007).

GEBVs were then used to select the top 20 F2 individu-
als (I = 0.1 based on Figs. 3c, 6c), and an equal number 
of selfed progeny were drawn from each of the selected 
F2 individuals. The resulting F3 population was genotyped 
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Fig. 6  The impact of the key 
simulation parameters on ∆gain 
when training and selecting in 
independent populations. ∆gain 
measures the impact that selfing 
had on genomic selection gains 
(i.e. ∆gain = max gain – min 
gain). Positive values for ∆gain 
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Fig. 8  Genomic selection 
breeding scheme designed 
to reduce time and selfing 
generations required for inbred 
development
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and sorted by GEBVs, and the highest true breeding value 
was recorded among the top 20 F3 individuals. In simula-
tion, we can simply observe the true breeding values. In 
practice, breeders would send the top 20 GEBV plants to 
variety trials to obtain estimates of true breeding values. 
Finally, we sampled and genotyped progeny from the max 
selected F3 individual to optimize homozygosity for inbred 
development.

The first objective was to determine how many F3 indi-
viduals to screen to match or exceed gains obtained by 
training and selection in the F8. According to Fig. 9, an F3 
of size 300 (i.e. sampling 15 selfed progeny from each of 
the top 20 F2 individuals) matched the F8 gains, and the F3 
significantly outperformed the F8 thereafter. By sampling 
1,500 F3 individuals, we increased average performance by 
more than 10 % over the F8 gains. Figure 9 also illustrates 
diminishing marginal returns as the F3 population size 
grows past 1,500.

The next goal was to determine how F3 gains compared 
with F8 gains as we varied the key simulation parameters. 
Figure 10 shows how both schemes performed across a 
range of marginal values for heritability and number of 
QTL. This experiment fixed the F3 size at 1,500 plants (i.e. 
75 seed per selected F2 individual). Figure 10a indicates 
that the schemes captured comparable gains at low herita-
bility, but the F3 scheme clearly dominated as h2 increased. 

Overall, heritability had significantly more impact on F3 
selection than F8 selection. Figure 10b shows comparable 
gains under sparse QTL models, but the F3 scheme again 
dominated as NQTL increased.

Although F3 selections surpassed the F8 gains, thereby 
saving several generations, there was a price to pay in het-
erozygosity. For the F3 scheme, the selected max individual 
averaged 22 % heterozygosity (not shown). Such high lev-
els of heterozygosity are normally unacceptable for com-
mercial production—either as inbreds for hybrid produc-
tion or as open-pollinated varieties.

We thus asked the question whether an additional gen-
eration of selfing (F4), combined with marker-assisted 
selection for homozygosity, might result in lines with 
acceptable levels of heterozygosity. For this experi-
ment, we kept the F3 size fixed at 1,500 as previously 
described. After performing genomic selection in the F3, 
we selfed the max selected F3 individual multiple times 
and reported the minimum heterozygosity observed in 
the progeny as a function of F4 population size (Fig. 11). 
Since no trait selection was performed in the F4, the F4 
selected individual had the same expected breeding value 
as the F3 selected individual (not shown). In other words, 
the homozygosity optimization did not impact expected 
gains.
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To summarize, the curves in Figs. 9,  10 indicate that—
by screening 1,500 F3 genotypes—we can match or exceed 
F8 gains across a broad range of heritability and number 
of QTLs. In addition, without reducing expected gains, we 
can achieve a heterozygosity of about 0.03 by sampling 
150 F4 progeny and of about 0.02 by sampling 500 prog-
eny (Fig. 11). Compared with the F8 single seed descent 
approach, this scheme would save four generations of 
breeding and incur the cost of genotyping ≤2,000 addi-
tional individuals (1,500 F3 and 500 F4). Further, the new 
approach requires no additional phenotyping (Fig. 8).

The value of the proposed method is based on two pri-
mary assumptions. First, we have assumed that the cost 
of genotyping the F3 and F4 individuals does not greatly 
exceed the cost of developing an F8 population. Second, we 
have assumed that sampling thousands of progeny is bio-
logically feasible.

Impact of non-additivity and the GEBV training method 
on gains

The F3 gains reported above were based on the assumption 
of additive effects and on the use of a single GEBV training 
method (GBLUP). In this section, we evaluate the impact 
of deviations from additivity and of using alternative 
GEBV models. Table 2 reports the performance of the F3 
scheme using three GEBV methods across three non-addi-
tive genetic models. For this experiment, we fixed the F3 
size at 1,500 plants (i.e. 75 seed per selected F2 individual) 

and Nsel = 20. The first column (ADD) shows gains under 
additive phenotypes. The second column (NA1) shows 
gains in the presence of pairwise epistasis. The third (NA2) 
and fourth (NA3) column show performance under the sig-
moid and parabolic transformations, respectively.

For all three training methods, non-additivity reduced 
genomic selection performance (Table 2). Pairwise epista-
sis (NA1) was most severe, reducing gains by about 50 %. 
With regards to GEBV methods, Bayes B was inferior over 
all models. Furthermore, given the similar performance of 
GBLUP and Bayes C, these results suggest that the use of 
Bayesian variable selection is unlikely to improve the per-
formance of this particular F3 scheme.

While Table 2 clearly demonstrates that non-additivity 
reduced F3 genomic selection gains, we have not resolved 
the question of whether the F3 scheme captured gains 
comparable to the F8 scheme under non-additivity. There-
fore, we computed a ratio of F3 genomic selection gains 
to the best possible F8 gains. Specifically, for each model 
of non-additivity, we computed the expectation of the max 
true breeding value in the F8. This value bounds the per-
formance of F8 genomic selection gains and was independ-
ent of GEBV training method. Table 3 expresses the results 
from Table 2 as a proportion of the best possible gain when 
training and selecting in the F8. In other words, Table 3 
reports a lower bound on the relative performance of the F3 
scheme to the F8 scheme.

This analysis leads to several interesting observations. 
First, pairwise epistasis (NA1) caused the F3 scheme 
to have an even higher performance relative to the F8.  
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Table 2  The effects of GEBV method and non-additive effects mod-
els (NA) on F3 genomic selection gains 

ADD denotes additive effects, and NA1 denotes pairwise epistasis. 
NA2 used the sigmoid transformation of breeding value. NA3 used 
the parabolic transformation (see  "Methods" for details). F3 popu-
lation size was fixed at 1,500 plants based on 10,000 simulations. 
Standard errors in parentheses

Methods ADD NA1 NA2 NA3

BLUP 2.53 (0.01) 1.33 (0.01) 2.31 (0.01) 2.33 (0.01)

Bayes B 2.40 (0.01) 1.20 (0.03) 2.28 (0.01) 2.28 (0.01)

Bayes C 2.52 (0.01) 1.25 (0.03) 2.30 (0.02) 2.31 (0.01)

Table 3  Relative F3 gains using different GEBV methods and non-
additive effects models 

Note: This table expresses the results from Table 2 in terms of relative 
F8 performance (F3 genomic selection gain)/(F8 max possible gain)

Methods ADD NA1 NA2 NA3

BLUP 1.11 1.48 1.02 1.02

Bayes B 1.05 1.33 1.01 1.00

Bayes C 1.11 1.38 1.02 1.01
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In other words, the F3 scheme was less susceptible to the 
negative effects of pairwise epistasis. We speculate that, by 
allowing small differences in genotype to produce major 
differences in breeding value, pairwise epistasis amplified 
the benefits of the large sample size (1,500 individuals) 
used in the F3 scheme. Second, while F3 gains exceeded 
the F8 by more than 10 % under additivity (ADD), the F3 
performed approximately the same as the F8 with the non-
linear transformations (NA2, NA3). In summary, although 
non-additivity severely reduced absolute gains, the F3 
scheme (using BLUP or Bayes C) performed as well or 
better than the F8 scheme under all types of non-additivity 
considered.

Discussion

Unlike animals, most plants are capable of self-fertiliza-
tion, a severe form of inbreeding. Selfing not only ampli-
fies additive genetic variance (i.e. heritability), and hence 
response to phenotypic selection, but it also leads to more 
uniform genetic stocks, which is critical in the develop-
ment of both hybrid and open pollinated crops (Simmonds 
1979). As a result, selfing is a common step in the breeding 
paradigm of most crop plants (Fess et al. 2011).

Genomic selection is a relatively new approach for max-
imizing selection gains in plant and animal breeding. Com-
pared with traditional phenotypic selection, genomic selec-
tion has the potential to improve the precision of selection, 
increase the number of breeding cycles per unit time, and 
reduce phenotyping costs (Meuwissen et al. 2001). A suc-
cessful genomic selection experiment requires the devel-
opment of populations to serve two distinct but comple-
mentary purposes. First, the training population must have 
genotype data, phenotype data, and favorable properties 
for marker-based regression models. For example, marker 
density, LD, and heritability can all impact GEBV train-
ing (Zhong et al. 2009; Daetwyler et al. 2010). Second, the 
selection population—which requires genotype data but not 
necessarily phenotype data—must contain superior geno-
types (i.e. transgressive segregants) that can be identified 
and selected for advancement using GEBVs. An important 
feature of genomic selection is that the training and selec-
tion populations need not coincide.

A number of studies on the application of genomic 
selection in plants have focused on situations where both 
the training and selection populations trace back to the 
same biparental cross(es), and selfing—or other severe 
forms of inbreeding such as doubled haploidy—has often 
been used to generate these populations (Mayor and Ber-
nardo 2009; Bernardo and Yu 2007; Guo et al. 2012; Hef-
fner et al. 2010, 2011; Piepho 2009). However, to our 
knowledge, none of these studies have examined the impact 

of selfing on response to genomic selection, nor have they 
separated the impact of selfing on the training population 
versus the selection population. Since selfing is a common 
step in plant breeding, it seemed worthwhile to investigate 
its impact on genomic selection.

Impact of selfing on genomic selection gains

The purpose of the current study was to quantify the impact 
of selfing on the performance of genomic selection in bipa-
rental populations over a wide range of key parameters 
(e.g. heritability, number of QTLs, population size and 
selection intensity). Moreover, we wished to measure the 
relative impact of selfing on the performance of the training 
population versus the selection population. Key findings 
relative to these issues are as follows: 

1. Selfing has a significant positive impact on response to 
genomic selection. For example, F8 gains exceeded F2 
gains by more than 70 % on average. However, most of 
the gains are realized by the F5 generation.

2. The gains in genomic selection response attributable to 
selfing hold over a wide range population sizes (100–
500), heritabilities (0.2–0.8), and selection intensities 
(0.01–0.1). However, the benefits of selfing are dramat-
ically reduced as the number of QTLs drops below 20.

3. The major cause of improved response of genomic 
selection with selfing is through an increase in occur-
rence of superior genotypes (i.e. transgressive seg-
regants) in the selection population.

4. Performance of the training population improves with 
selfing (especially with low heritability and small 
population sizes); however, the magnitude of these 
improvements is relatively small compared with 
improvements observed in the selection population.

Implications for practical application of genomic selection 
in plant breeding

The finding that training populations and selection popu-
lation respond differently to selfing raises the question of 
how best to use selfing in breeding experiments involving 
genomic selection. Results from the current study indicate 
that is not necessary to create advanced selfing populations 
to achieve good training for genomic selection. In fact, 
across a wide range of key parameters (e.g. heritability, 
population sizes, number of QTLs), good training can be 
achieved as early as the F2 (e.g. genotyping F2 individu-
als then phenotyping either F2 individuals, testcrosses or 
F3 progeny). However, further selfing does significantly 
improve performance of the selection population, and thus 
genomic selection gains, by increasing the occurrence of 
superior genotypes.
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The most expensive part of genomic selection experi-
ments is the time and cost of phenotyping the training pop-
ulation. However, once training is accomplished, individu-
als in the selection population have only to be genotyped 
to derive GEBVs for selection. Thus, as part of the current 
study, we asked whether one could train in an F2 popula-
tion and then use that information to screen a larger F3 pop-
ulation (via GEBVs) such that genetic gains that match or 
exceed an F8 or DH might be achieved. The results from 
these experiments were encouraging, indicating that gains 
surpassing an F8 or DH are achievable when selecting from 
an F3 under a wide range of key parameters. One potential 
drawback of this method is the relatively high level of het-
erozyosity of lines selected at this stage. However, simu-
lations indicated that marker-based selection can be used 
to reduce heterozygosity to <3 % by selfing the GEBV 
selected F3 individuals.

Finally, it should be noted that the above was a proof-of-
concept experiment using simulation, and that the specific 
strategy outlined would need to be modified and tailored 
to the biological constraints of any given crop. Nonethe-
less, these results are encouraging and suggest that optimal 
deployment of genomic selection in biparental populations 
might involve only a couple of rounds of selfing, while 
delivering gains traditionally achieved only after signifi-
cantly more rounds of selfing (or DH).
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